111 research outputs found

    A new multipath mitigation method for GNSS receivers based on antenna array

    Get PDF
    the potential of small antenna array for multipath mitigation in GNSS systems is considered in this paper. To discriminate the different incoming signals (Line of sight and multipaths), a new implementation of the well known SAGE algorithm is proposed. This allows a significant complexity reduction and it is fully compatible with conventional GNSS receivers. Theoretical study thanks to the Cramer Rao Bound derivation and tracking simulation results (in static and dynamic scenarios) show that the proposed method is a very promising approach for the multipath mitigation problem in GNSS receivers

    A new tracking approach for multipath mitigation based on antenna array

    Get PDF
    In Global Navigation Satellites Systems (GNSS), multipaths (MP) are still one of the major error sources. The additional signal replica due to reflection will introduce a bias in conventional Delay Lock Loops (DLL) which will finally cause a strong positioning error. Several techniques, based on Maximum Likelihood estimation (ML), have been developed for multipaths mitigation/estimation such as the Narrow correlator spacing [1] or the Multipath Estimating Delay-Lock-Loop (MEDLL) [2] algorithm. These techniques try to discriminate the MP from the Line Of Sight Signal (LOSS) on the time and frequency domains and thus, short delay multipaths (<0.1Chips) can not be completely mitigated. Antenna array perform a spatial sampling of the wave front what makes possible the discrimination of the sources on the space domain (azimuth and elevation). As the time-delay domain and space domain can be assumed independent, we can expect to mitigate/estimate very short delay MP by using an antenna array. However, we don't want to increase too much the size, the complexity and the cost of the receivers and thus, we focus our study on small arrays with a small number of antennas: typically a square 2x2 array. Consequently, conventional beamforming (space Fast Fourier Transform) is not directive enough to assure the mitigation of the multipaths, and then this first class of solutions was rejected. In order to improve the resolution, adaptive beamformers have also been tested. However, the LOSS and the MP signal are strongly correlated and thus, classical adaptive algorithms [3] are not able to discriminate the sources. These preliminary studies have shown that the mitigation/estimation of multipaths based on the space domain will exhibit limited performances in presence of close sources. Then, in order to propose robust algorithms, we decided to investigate a space-time-frequency estimation of the sources. Space Alternating Generalized Expectation maximisation (SAGE) algorithm [4], which is a low-complexity generalization of the Expectation Maximisation (EM) algorithm, has been considered. The basic concept of the SAGE algorithm is the hidden data space [4]. Instead of estimating the parameters of all impinging waves in parallel in one iteration step as done by the EM algorithm, the SAGE algorithm estimates the parameters of each signal sequentially. Moreover, SAGE algorithm breaks down the multi-dimensional optimization problem into several smaller problems. In [5], it can be seen that SAGE algorithm is efficient for any multipaths configurations (small relative delays, close DOAs) and space-time-frequency approach is clearly outperforming classical time-frequency approaches. Notwithstanding, SAGE algorithm is a post processing algorithm. Thus, it's necessary to memorise in the receiver the incoming signal in order to apply SAGE estimation. For example, if we want to process 10ms of signal with a 10MHz sampling rate, we need to store a matrix of m*105 with m the number of antennas. In such condition, we can understand than SAGE algorithm is hardly implemented in real time. The challenge is then to find a new type of algorithms that reach the efficiency of the SAGE algorithms, but with a reduced complexity in order to enable real time processing. Furthermore, the implementation should be compatible with conventional GNSS tracking loops (DLL and PLL). To cope with these two constraints, we propose to apply the SAGE algorithm on the post-correlated signal. Indeed, the correlation step can be seen as a compression step and thus, the size of the studied signal is strongly reduced. In such a way, SAGE algorithm is able to provide estimates of the relative delay and Doppler of the received signals with respect to the local replicas. Thus, a post correlation implementation of SAGE can be seen as a discriminator for both the DLL and the PLL

    A new blind adaptive antenna array for GNSS interference cancellation

    Get PDF
    This paper introduces a new blind adaptive antenna array as a possible solution to the interference cancellation problem. This new technique is compared to three classical ones over two different sensor radiation patterns. Special attention is paid to the array compatibility with a conventional GNSS receiver. A wide radiation pattern sensor is shown to improve the positioning accuracy by maximizing the satellite constellation visibility. Finally, the new processor demonstrates its superiority in term of positioning accuracy in presence of strong interferences. However, its phase response may make it incompatible with classical GNSS receivers. Some efforts must be done to stabilize it

    Comparison of SAGE and classical multi-antenna algorithms for multipath mitigation in real-world environment

    Get PDF
    The performance of the Space Alternating Generalized Expectation Maximisation (SAGE) algorithm for multipath mitigation is assessed in this paper. Numerical simulations have already proven the potential of SAGE in navigation context, but practical aspects of the implementation of such a technique in a GNSS receiver are the topic for further investigation. In this paper, we will present the first results of SAGE implementation in a real world environmen

    A New GNSS Integrity Monitoring Based on Channels Joint Characterization

    Get PDF
    Many GNSS (Global Navigation Satellites System) applications need high integrity performances. Receiver Autonomous Integrity Monitoring (RAIM), or similar method, is commonly used. Initially developed for aeronautics, RAIM techniques may not be fully adapted for terrestrial navigation, especially in urban environments. Those techniques use basically the pseudoranges to derive an integrity criterion. In this paper, we introduce a new integrity criterion based on the correlation quality of each channel. This quality assessment is computed from the correlation levels for each channel, all based on a single position and speed. Hence, as the so-called Direct Position Estimation (DPE), we exploit the joint behaviour of all channels to detect any incoherence at an upstream step of the processing. This Direct RAIM (D-RAIM) allows detecting possible integrity problems before it can be seen on a classical RAIM scheme that only exploits the outputs of each channel

    BLAST: Correlations in the Cosmic Far-Infrared Background at 250, 350, and 500 microns Reveal Clustering of Star-Forming Galaxies

    Full text link
    We detect correlations in the cosmic far-infrared background due to the clustering of star-forming galaxies in observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST, at 250, 350, and 500 microns. We perform jackknife and other tests to confirm the reality of the signal. The measured correlations are well fit by a power law over scales of 5-25 arcminutes, with Delta I/I = 15.1 +/- 1.7%. We adopt a specific model for submillimeter sources in which the contribution to clustering comes from sources in the redshift ranges 1.3 <= z <= 2.2, 1.5 <= z <= 2.7, and 1.7 <= z <= 3.2, at 250, 350, and 500 microns, respectively. With these distributions, our measurement of the power spectrum, P(k_theta), corresponds to linear bias parameters, b = 3.8 +/- 0.6, 3.9 +/- 0.6 and 4.4 +/- 0.7, respectively. We further interpret the results in terms of the halo model, and find that at the smaller scales, the simplest halo model fails to fit our results. One way to improve the fit is to increase the radius at which dark matter halos are artificially truncated in the model, which is equivalent to having some star-forming galaxies at z >= 1 located in the outskirts of groups and clusters. In the context of this model we find a minimum halo mass required to host a galaxy is log (M_min / M_sun) = 11.5 (+0.4/-0.1), and we derive effective biases $b_eff = 2.2 +/- 0.2, 2.4 +/- 0.2, and 2.6 +/- 0.2, and effective masses log (M_eff / M_sun) = 12.9 +/- 0.3, 12.8 +/- 0.2, and 12.7 +/- 0.2, at 250, 350, and 500 microns, corresponding to spatial correlation lengths of r_0 = 4.9, 5.0, and 5.2 +/- 0.7 h^-1 Mpc, respectively. Finally, we discuss implications for clustering measurement strategies with Herschel and Planck.Comment: Accepted for publication in the Astrophysical Journal. Maps and other results available at http://blastexperiment.info

    Hematopoietic Cell Transplantation Cures Adenosine Deaminase 2 Deficiency : Report on 30 Patients

    Get PDF
    Correction; Early Access: ' DOI: 10.1007/s10875-022-01280-y Early Access: APR 2022Purpose Deficiency of adenosine deaminase 2 (DADA2) is an inherited inborn error of immunity, characterized by autoinflammation (recurrent fever), vasculopathy (livedo racemosa, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency, lymphoproliferation, immune cytopenias, and bone marrow failure (BMF). Tumor necrosis factor (TNF-alpha) blockade is the treatment of choice for the vasculopathy, but often fails to reverse refractory cytopenia. We aimed to study the outcome of hematopoietic cell transplantation (HCT) in patients with DADA2. Methods We conducted a retrospective study on the outcome of HCT in patients with DADA2. The primary outcome was overall survival (OS). Results Thirty DADA2 patients from 12 countries received a total of 38 HCTs. The indications for HCT were BMF, immune cytopenia, malignancy, or immunodeficiency. Median age at HCT was 9 years (range: 2-28 years). The conditioning regimens for the final transplants were myeloablative (n = 20), reduced intensity (n = 8), or non-myeloablative (n = 2). Donors were HLA-matched related (n = 4), HLA-matched unrelated (n = 16), HLA-haploidentical (n = 2), or HLA-mismatched unrelated (n = 8). After a median follow-up of 2 years (range: 0.5-16 years), 2-year OS was 97%, and 2-year GvHD-free relapse-free survival was 73%. The hematological and immunological phenotypes resolved, and there were no new vascular events. Plasma ADA2 enzyme activity normalized in 16/17 patients tested. Six patients required more than one HCT. Conclusion HCT was an effective treatment for DADA2, successfully reversing the refractory cytopenia, as well as the vasculopathy and immunodeficiency. Clinical Implications HCT is a definitive cure for DADA2 with > 95% survival.Peer reviewe

    Validation of a serum ELISA test for cyathostomin infection in equines

    Get PDF
    Cyathostomins are ubiquitous equine nematodes. Infection can result in larval cyathostominosis due to mass larval emergence. Although faecal egg count (FEC) tests provide estimates of egg shedding, these correlate poorly with burden and provide no information on mucosal/luminal larvae. Previous studies describe a serum IgG(T)-based ELISA (CT3) that exhibits utility for detection of mucosal/luminal cyathostomins. Here, this ELISA is optimised/validated for commercial application using sera from horses for which burden data were available. Optimisation included addition of total IgG-based calibrators to provide standard curves for quantification of antigen-specific IgG(T) used to generate a CT3-specific 'serum score' for each horse. Validation dataset results were then used to assess the optimised test's performance and select serum score cut-off values for diagnosis of burdens above 1,000, 5,000 and 10,000 cyathostomins. The test demonstrated excellent performance (Receiver Operating Characteristic Area Under the Curve values >0.9) in diagnosing infection, with >90% sensitivity and >70% specificity at the selected serum score cut-off values. CT3-specific serum IgG(T) profiles in equines in different settings were assessed to provide information for commercial test use. These studies demonstrated maternal transfer of CT3-specific IgG(T) in colostrum to newborns, levels of which declined before increasing as foals consumed contaminated pasture. Studies in geographically distinct populations demonstrated that the proportion of horses that reported as test positive at a 14.37 CT3 serum score (1,000-cyathostomin threshold) was associated with parasite transmission risk. Based on the results, inclusion criteria for commercial use were developed. Logistic regression models were developed to predict probabilities that burdens of individuals are above defined thresholds based on the reported serum score. The models performed at a similar level to the serum score cut-off approach. In conclusion, the CT3 test provides an option for veterinarians to obtain evidence of low cyathostomin burdens that do not require anthelmintic treatment and to support diagnosis of infection
    corecore